Ketelvoedingswater - Algemeen en Machinist: verschil tussen pagina's

Uit Wouda's Wiki
(Verschil tussen pagina's)
imported>Jan Pieter Rottine
Geen bewerkingssamenvatting
 
imported>Jan Pieter Rottine
Geen bewerkingssamenvatting
 
Regel 1: Regel 1:
''(deze pagina is nog in bewerking!)''
De machinist heeft als taak erop toe te zien dat de stoomwerktuigen op de juiste manier en met grote regelmaat hun arbeid kunnen leveren. Hij heeft daarbij de supervisie over de gehele stoominstallatie: de [[stoomketel]], de [[stoommachines]] en alle bijbehorende [[hulpapparatuur]].
<br>Hij moet daarbij voortdurend waken voor [[gevaren]] die zich tijdens het werken met de machines en toestellen kunnen voordoen.
<br>De [[vakopleiding tot machinist]] vraagt kennis van de opbouw en werking van stoommachines en alles wat daarbij tot een complete stoominstallatie behoort.
<br>Zowel de machinist als de eigenaar van de '''[[stoomtoestellen]]''' moeten op de hoogte zijn van de eisen die aan het uitoefenen van een dergelijke functie worden gesteld.


'''Ketelvoedingswater en de voedingswaterreiniging'''
De '''werkzaamheden van de machinist''' worden bepaald door de omvang en het doel van de '''[[stoominstallatie]]'''.
 
<br>Vaak wordt er onderscheid gemaakt: een machinist kan zijn werk uitoefenen bij de spoorwegen ('''[[spoorwegmachinist]]'''), op de grote vaart '''([[scheepsmachinist]])''' of bij stoombedrijven op het vaste land '''([[landmachinist]])'''. Tot de stoombedrijven op het vaste land  behoren ook de stoomgemalen.
Het '''water''' dat in aanmerking komt '''voor de stoomvorming in de stoomketel''' moet '''zo rein mogelijk''' zijn.
<br>In principe behoren tot de werkzaamheden van de machinist het stoken van de ketel, het verzorgen van de stoommachine, maar ook het overbrengen van het bewegende arbeidsvermogen op het productiesysteem.
<br>De '''ketelwanden''' mogen bij het verhitten van het water '''niet aankoeken'''. Een '''korst aan de waterzijde op de binnenwanden van de ketel''' is heel '''onvoordelig voor de warmteoverdracht aan het ketelwater'''. '''Chemisch''' gezien zou '''het ketelwater daarom zo elementair mogelijk''' moeten zijn. '''Eigenlijk voldoet alleen gedestilleerd water''' aan deze eis, maar dat kunnen we '''in de natuur niet''' vinden.
<br>Bij de uitgebreide stoominstallaties van fabrieken of de grote gemalen kan één enkel persoon dit werk niet allemaal tegelijk uitvoeren. Daarom krijgt hij extra personeel toegewezen, die eenvoudiger werkzaamheden kunnen overnemen: het schoonhouden, poetsen, smeren, aanvoer van brandstof (steenkolen). Ook de afvoer van as en sintels kan door helpers worden verricht.
 
<br>Het stoken van de ketels gebeurt dan door de stokers, een werkzaamheid die veel vakbekwaamheid vraagt. De '''[[stoker]]''' moet een goed oog voor de veiligheid hebben en hij moet vooral [[zuinig kunnen stoken]].
=='''Voedingswater'''==
'''Voor het voeden van stoomketels''' komen verschillende '''natuurlijke watersoorten''' in aanmerking.
 
==='''Regenwater'''===
 
<ul>
<li>Het '''zuiverste water''' in de natuur is '''regenwater'''.
<li>Regenwater is water dat '''de natuurlijke weg door de atmosfeer heeft afgelegd''' en is '''opgevangen in een reservoir'''. Als het regenwater '''zorgvuldig''' is opgevangen, bevat het '''uitsluitend bestanddelen uit de lucht'''. De '''zuurstof en vrij koolzuur''' kunnen daarentegen '''wel al last veroorzaken in het stoombedrijf'''.
<li>Helaas kan men het regenwater '''niet in voldoende hoeveelheden''' verzamelen om '''dagelijks grote stoomketels te kunnen vullen''' en '''tijdens het stoombedrijf van water te blijven voorzien'''. Zelfs in het geval van het Nederlandse zeeklimaat, waarbij sprake is van zachte regenrijke winters en gematigde koele zomers, kan het rechtstreeks opvangen van regenwater uit de lucht niet aan de vraag voldoen.
<br>Er blijft ons dus niets anders over dan '''voor het vullen van de stoomketels naar andere waterbronnen en -voorraden om te zien'''.
</ul>
 
[[Bestand:Stortregen_k.jpeg|400×300px|link=]]
==='''Oppervlaktewater'''===
 
'''Oppervlaktewater''' uit '''rivieren, meren, kanalen en vaarten'''.
<br>Dit water betreft, '''naast door rivieren aangevoerd water''', meestal '''ook regenwater''' dat '''via de oppervlakte in greppels, sloten, vaarten, kanalen in meren en boezems wordt bijeengebracht'''. Dit water heeft bovendien in bepaalde gevallen '''ook nog een betrekkelijk korte weg door de aardbodem afgelegd'''.
<br>Het oppervlaktewater is '''meestal verontreinigd door onopgeloste bestanddelen''', die er in min of meer '''fijne toestand''' in voorkomen en van '''anorganische of organische oorsprong''' zijn. Ook bevat het oppervlaktewater '''colloïdaal opgeloste stoffen''', die zo '''fijn verdeeld''' zijn, dat ze '''door filtratie niet verwijderd kunnen worden'''.
<br>Het '''neemt door het transport uit de bodem bestanddelen in zich op''' als: '''zuurstof, stikstof, koolzuur, magnesiumchloride, gips, koolzure kalk, koolzure magnesia, kiezelzuur, koolzure ijzeroxyde, salpeterzuur en vetzuren'''.
<br>Van deze stoffen zijn '''vooral de zuurstof en de zuren schadelijk''' voor de '''ketelwanden''' die erdoor worden aangetast. Ook de '''chlorideverbindingen''' kunnen '''gevaarlijke schade''' aanbrengen als ze in  de ketel ontleed worden en dan '''zoutzuur''' kunnen vormen.
<br>De vorming van ketelsteen vindt '''vooral plaats uit de dubbelkoolzure kalk, gips en koolzure magnesia'''.
 
De '''zouten''' zijn '''op zichzelf minder schadelijk''', maar ze moeten '''wel zo nu en dan worden afgevoerd''' door ze uit de ketel te '''spuien''' (via de '''spuileiding''' onder in de ketelwandwand aangebracht)
 
==='''Grondwater'''===
 
'''Grondwater''' is als regenwater in de bodem gedrongen en dat '''dieper in de aardbodem voldoende tijd heeft gekregen om uit de bodem verschillende bestanddelen en stoffen op te lossen en op te nemen'''.
<br>Grondwater '''bevat weinig of geen zuurstof''', omdat dit bij de '''afbraakprocessen in de bodem door de organische stoffen wordt verbruikt'''. Het bij deze processen gevormde koolzuur gas wordt door het water opgelost, waardoor het min of meer zuur wordt en bij het lange doordringsproces volop de gelegenheid krijgt '''om de bestanddelen uit de bodem op te nemen'''.
 
[[Bestand:Grondwater_k.jpg|400×300px|link=]]
 
Omdat '''oppervlaktewater''' en in sommige gevallen ook wel '''grondwater''' in Nederland '''in ruime hoeveelheden voorhanden''' zijn, worden de '''stoomketels in het stoombedrijf bijna altijd gevuld met deze watersoorten'''. De hierin '''opgenomen bestanddelen''' hebben '''wel gevolgen voor de behandeling van dit water''', voordat ze als '''ketelvoedingswater''' kunnen worden gebruikt.
 
==='''Behandeling van het oppervlakte- en grondwater ter voorbereiding voor het stoombedrijf'''===
<br>
[[Bestand:Oppervlaktewater_k1.jpg|400×300px|link=]]
<br>
 
In het '''begin''' vormt zich '''alleen maar een laag slib''' in de ketel, maar '''naarmate de verdamping doorgaat''' zal zich al '''spoedig een laag ketelsteen''' vormen, die zolang er geen '''gips''' aanwezig is, '''eerst nog redelijk zacht''' zal blijven. '''Als er echter gips afgescheiden wordt''', dan zal dit de '''ketelsteen''' '''geleidelijk hard''' maken.
<br>Deze hardgeworden ketelsteen is '''voor het stoombedrijf heel onvoordelig''', omdat de '''warmteoverdracht al snel veel slechter''' wordt. Als de laag '''ketelsteen 1 mm dik wordt neemt het brandstofverbruik ca. 10 %, bij 10 mm ca, 100 % toe'''.
 
Als de laag '''ketelsteen te dik''' wordt zal er tenslotte '''helemaal geen warmteoverdracht''' meer plaats kunnen vinden, het '''ketelwater wordt niet meer verhit''' en '''stoomvorming blijft uit!''' Bovendien wordt, andersom gezien, '''de ketelwand niet meer door het water afgekoeld''' en dan zal '''de ketelplaat zo sterk verhit worden dat die uiteindelijk door de stoomdruk gaat scheuren''' en een '''ketelexplosie''' kan volgen.
 
==='''Hardheid'''===
Om de '''hoedanigheid van het water''' te kunnen '''normeren''' spreekt men van '''hard en zacht water'''. Daarvoor heeft men '''een schaal van hardheidsgraden''' vastgesteld.
<br>Men onderscheidt hierbij '''Duitse, Franse en Engelse harheidsgraden'''.
<ul>
<li>'''1 Duitse harheidsgraad''' komt overeen met '''1 deel calciumoxyde (CaO) op 100.000 delen water'''
 
<li>'''1 Franse hardheidsgraad''' komt overeen met '''1 deel koolzure kalk (CaCO3) op 100.0000 delen water'''
 
<li>'''1 Engelse hardheidsgraad''' komt overeen met '''1 deel koolzure kalk (CaCO3) op 70.000 delen water'''
</ul>
Als men rekent met de scheikundige verbindingsgewichten, bevat 1m3 water met 1 Duitse hardheidsgraad dan:
10 gr '''calciumoxyde''' (CaO), 17,9 g '''koolzure kalk''' (CaCO3), 7,15 g '''magnesiumoxyde''' (MgO), 24,5 g gips (CaSO4) en 15 g '''koolzure magnesia''' (MgCO3),
<br>waaruit we kunnen '''afleiden''' dat '''1 Duitse hardheidsgraad = 1,79 Franse = 1,25 Engelse hardheidsgraden'''.
 
Door middel van een '''zeepoplossing''' kan men in zekere zin '''bepalen, of het water hard''' is. Een '''zeepoplossing schuimt namelijk niet in hard water''' en wordt '''door de magnesia- en kalkzouten ontleed'''. Pas '''als alle kalk- en magnesiazouten door de zeep zijn gebonden''', zal die '''beginnen te schuimen'''.
<br>'''Hoe meer zeep men hiervoor nodig heeft, hoe harder het water is'''.
 
Het is goed om het '''water''', dat voor de '''ketelvoeding''' gebruikt gaat worden, '''eerst scheikundig te gaan onderzoeken''', omdat '''de maximum toegestane hardheid afhankelijk is van de soort ketel in de stoominstallatie'''.
<br>Zo moet men het water bij '''vuurhaard-ketels''' gaan reinigen, als het water '''meer dan 6 a 7 hardheidsgraden''' bezit.
<br>Bij '''waterpijpketels''' (bij voorbeeld '''Babcock en Wilcoxketels''') kan men '''zelfs een veel kleinere hardheid toestaan'''.
 
==='''Reiniging van ketelvoedingswater'''===
 
De '''reiniging van het voedingswater''' kan op '''verschillende manieren''' gebeuren:
<ul>
<li>'''mechanische reiniging'''
<li>'''reiniging door verwarming'''
<li>'''scheikundige reiniging''', die nog '''onderverdeeld''' kan worden in:
<ul>
        <li>'''reiniging met soda'''
<li>'''reiniging met gebluste kalk, etsnatron en koolzure baryt'''
<li>'''reiniging door middel van de permutiet-methode'''
        </ul>
<li>'''thermisch-chemische reiniging'''
<li>'''verdamping'''
<li>'''het gebruik van condensatiewater''' voor het voedingswater
</ul>
 
===='''De mechanische reiniging'''====
 
De '''stoffen''', die '''zwaarder dan water''' zijn '''bezinken''' als het water '''een tijdje stilstaat'''. De '''stoffen''' die echter '''in fijnverdeelde toestand''' in het water zitten, '''bezinken niet zo gemakkelijk'''. Het water moet '''eerst door een filter''' geleid worden. Het filtermateriaal moet '''niet te grofkorrelig''' zijn, men gebruikt hiervoor vaak '''kiezel of cokes'''. Het water moet '''eerst door het grove materiaal gevoerd worden en dan door het fijn korrelige materiaal'''.
 
Als voorbeeld wordt hier het '''toestel van de firma Reisert (Keulen)''' getoond.
 
[[Bestand:Fig._170_Imelman_pag_186a.jpg|500×412px|link=]]
 
Het te reinigen water komt '''door de leiding A binnen''', stroomt '''door de kiezelmassa F''' en '''vloeit door B gereinigd uit''' het toestel.
<br>In het bedrijf zijn '''alleen de buizen A en B geopend''', alle '''andere blijven gesloten'''.
<br>Om het toestel '''schoon te maken''', wordt '''A gesloten''' en vervolgens '''laat men water door B in R''' stromen, zodat het '''door f naar buiten''' stroomt (bij S). Dan wordt ook het '''straaltoestel D in werking''' gebracht, zodat het '''door de geopende kraan C de lucht beneden het filtermateriaal van de slib reinigt''', die dan '''met het water wegvloeit'''. Het kraantje k moet daarbij geopend zijn, opdat de lucht ontwijken kan.
 
Het is duidelijk dat '''deze reinigingsvorm alleen''' toegepast kan worden als '''scheikundige reiniging niet nodig''' wordt geacht. Men kan ook '''mechanische en scheikundige reiniging combineren'''.
 
===='''Reiniging door verwarming'''====
 
'''Reiniging door verwarming''' berust op een eenvoudig principe. '''Bij normale temperatuur''' zijn koolzure kalk, koolzure magnesia en gips '''in het water opgelos'''t. Deze '''ketelsteenvormende stoffen''' worden '''bij temperaturen hoger dan 145 gr. C. uit het water afgescheiden'''.
<br>Als men het water dus '''verwarmd tot boven deze temperatuur''', '''voordat''' het in de ketel komt voor de stoomvorming en zodoende dus '''pas later met de ketelwanden in aanraking komt''', zal er nog maar '''heel weinig afzetting''' plaatsvinden.
<br>Hiervoor zijn '''verschillende toestellen''' uitgedacht. Als voorbeeld tonen we hier enige toepassingen.
 
[[Bestand:
 
Figuur 171 a pag 186 Imelman
Figuur 171 b pag 186 Imelman
Figuur 172 pag 187
 
Het toestel van de Fig. 171a wordt '''boven in de ketel in de stoomruimte aangebracht'''. Op het toestel slaan '''lucht, gassen en vaste stoffe'''n uit het voedingswater neer. '''Lucht en gassen''' worden '''direct met de stoom weggeleid''', zodat het aantasten van de ketelwanden door deze gassen niet meer mogelijk is. Het '''water stroomt vanaf de top van de tafels over de tafeletages via de openingen''' naar beneden.
<br>Het toestel is '''van een plaatijzeren kap voorzien''', waardoor het '''slib niet in de ketel''' terecht komt. Het water komt door bemiddeling van de kap '''bovendien met de stoom in aanrakin'''g en wordt zo ook '''verwarmd'''.
<br>Het weke '''slib''' kan '''dagelijks door het openen van de spuikraan (Fig. 171b) uit het toestel worden verwijderd'''. Dan blijft nog wel '''de hardere massa op de tafels liggen''', maar ook deze '''nog zachte massa''' kan '''gemakkelijk worden verwijderd'''.
<br>Als verbetering kan dit toestel ook '''in een aparte ketel buiten de stoomketel''' worden ondergebracht, zodat '''het water al gereinigd''' en '''voorverwarmd in de stoomketel''' stroomt.
<br>Op die wijze kan het toestel ook '''veel groter''' worden uitgevoerd.
<br>Deze wijze van reiniging door verwarming kan een stoomketel '''gemakkelijk een jaar in bedrijf''' houden, '''zonder''' dat hij inwendig moet worden '''geschoond'''.
 
In Fig. 172 zien we de ketelwatercirculator van Hotchkiss. De trechter D is op waterspiegelhoogte aangebracht en door pijp F met de kogel E, die op de ketel gemonteerd is, is verbonden. De watercirculatie gaat door F, E en C. Het slib wordt via B periodiek afgevoerd. (bij slecht water 1x per uur, bij beter water 2x per uur). Het luchtkraantje l wordt bij het opstoken open gezet, en gesloten als het water eruit stroomt, waardoor het toestel in bedrijf is gekomen.
 
Economiser
Een aandachtspunt is het feit dat het op bovenomschreven wijze gereinigde voedingswater als het nog ter voorwarming door een economiser stroomt, niet alleen de economiser vrij zal houden van ketelsteenvorming, maar er ook voor zal zorgen dat eventueel ketelsteen uit de economiser oplost. Als men dus een reinigingsinstallatie plaatst bij een ketelinstallatie, die al eerder met een economiser is ingericht, dan moet men er rekening mee houden dat de opgeloste ketelsteen uit de economiser gemakkelijk tot verstoppingen kan leiden.
 
'''Scheikundige reiniging'''
Alle scheikundige waterreinigingsmiddelen zorgen ervoor dat de toegevoegde stoffen zich met de ketelsteenvormers chemisch verbinden, zodat die laatste dan van het voedingswater worden afgescheiden.
<br>De ketelsteenvormers zijn:
 
Koolzure kalk (uit dubbelkoolzure kalk) (CaCO3) laat zich uitscheiden door
-1. gebluste kalk [Ca(OH)2]
-2. soda (Na2CO3)
-3. natronloog (N)
 
Zwavelzure kalk laat zich uitscheiden door
-1. alleen door soda, volkomen en alleen bij hoge verhitting
 
Koolzure magnesia laat zich uitscheiden door
-1. gebluste kalk bij verhitting
-2. natronloog     
 
De te gebruiken chemicaliën zijn dus vooral gebluste kalk, soda en natronloog.
<br> de soort en hoeveelheid van deze chemicaliën kunnen dus slechts op grond van scheikundig onderzoek worden bepaald. Als er in het voedingswater hoofdzakelijk zwavelzure kalk aanwezig is, zal men soda gebruiken, terwijl bij veel dubbelkoolzure kalk goedkope kalk en bij een combinatie van dubbelkoolzure kalk, gips en magnesium eerder natronloog met soda wordt toegepast.
 
'''Reiniging met soda'''
Reiniging met soda wordt toegepast in kleinere ketels en bij niet te hard voedingswater. De soda wordt samen met het water in de ketel geperst (bij grotere ketelinstallaties wordt het water al gereinigd nog voordat het in de ketel komt).
<br>
Fig. 173
<br>
<br>In Fig. 173 zien we het toestel van Dervaux.
<br>De soda wordt uit L in de voedingsleiding gebracht, terwijl het water door B en S in de ketel wordt geperst.
De cilinder D, op de ketel aangebracht, is met de ketel verbonden door buis V, die om zich heen een stoommantel U heeft. Ook de buis R is verbonden met de ketel, zonder stoommantel.
<br>Omdat buis V veel warmer wordt dan R zal het water hierin stijgen en gereinigd door R in de ketel terugstromen. Bij het terugstromen zal het water eerst de weg door de trechters G volgen, zodat het slib hier kan bezinken om af en toe door N weggespuid te worden.
<br>Men moet ervoor oppassen dat er niet te veel soda in de ketel komt, omdat het water dan kan opkoken en men natte stoom kan krijgen, terwijl dan ook de ketel en appendages worden aangetast. Het beste is om de reiniging met soda al te laten plaatsvinden in een verbonden toestel vóór de ketel. In het toestel wordt dan de soda met het voedingswater vermengd om het chemisch gereinigde voedingswater met een hoge temperatuur in de ketel te brengen, wat men met de afgewerkte stoom voor elkaar kan brengen.
   
Foto reactievat bij Halbertsma!
 
'''Reiniging met kalk en soda'''
Het meest gebruikte toestel is ook hier een toestel van Dervaux, vaak geleverd door de firma Reisert.
<br>
Fig. 174
<br>
De gebruikte chemicaliën zijn hier soda en kalk.
<br>Het voedingswater, dat gereinigd moet worden, komt via buis H in het reservoir R en vervolgens door de kraan P in E, waar het met de chemicaliën samnkomt en met deze in het reservoir D stroomt. Hierin worden de ketelsteenvormende stoffen afgescheiden.
<br>Het slib verzamelt zich onderin het reservoir D, waaruit het periodiek met kraan O wordt afgetapt.
<br>Het kalkwater (kalkmelk) wordt voorbereid in I, dat door K in t stroomt. Vanuit r stroomt tegelijkertijd het te reinigen water door V in t. Door de buis b komt het mengsel in het reservoir S, waarin het water met kalk verzadigd wordt. Het kalkwater stijgt dan langzaam op waarbij de snelheid van het water steeds afneemt vanwege de groter wordende doorsnede. Daardoor bezinken de kalkdeeltjes in S. Het kalkwater loop over door U in E.
<br>De soda wordt in c opgelost, komt daaruit in B, waarin de vloeistofspiegel door een vlotter op gelijke hoogte gehouden wordt en komt dan door het buisje n in E, waar het met het te reinigen water uit P en het kalkwater uit U samenkomt.
<br>Als door buis H minder water wordt toegelaten, dan daalt de waterspiegel in R, ook zal het wegvloeien door P en V afnemen, de vlotter in R zal dalen, waarmee het buisje N door middel van ketting Q verbonden is en zodoende zal het toevloeien van sodawater ook afnemen. 
 
'''Reiniging door middel van permutiet'''
Permutiet is een aluminiumsilicaat, verkregen door samensmelten van veldspaat, kaoline, klei, zand en soda door latere reiniging met heet water.
<br>Het te reinigen voedingswater wordt in bakken door een dikke laag permutiet gefiltreerd, waarbij natrium van het permutiet zich met calcium en magnesium van het water verbindt.
<br>Deze reiniging is heel eenvoudig, maar niet zo goedkoop. Als de werking afneemt moet het permutiet met chloornatrium (keukenzout) geregenereerd worden. Bij het later ontwikkelde neo-permutiet gaat de regeneratie sneller.
 
'''Thermisch-chemische reiniging'''
Dit procédé wordt voornamelijk toegepast bij waterpijp-ketelsystemen die als hoge-drukketels fungeren. Hier is het belangrijk om naast verregaande chemische ontharding ook ketelcorrosie als gevolg van inwerking van zuurstof en koolzuur te voorkomen. Ook het kiezelzuurgehalte wordt gecontroleerd.
Voedingswater dat kiezelzuur, humus, hoog chloor- en zoutgehalte bezit, bedoeld voor ketels met een druk boven 20 atmosfeer reinigt men niet graag langs chemische weg.
 
'''Reiniging door verdamping'''
<br>
Fig. 180 a, b, c. Pag 195 Imelman
<br>
-a. de stoominlaat
-b. de condensatiewateruitlaat
-c. damp van het te reinigen water
-d. desillaatuitlaat
-e. koelwaterinlaat
-f. koelwateruitlaat
 
Bij stoomkrachtinstallaties voor hoge druk is steen- en gasvrij voedingswater een absolute vereiste. Dat is alleen voor elkkaar te krijgen als men het voedingswater verdampt, voordat het met het condensatiewater wordt vermengd. Bij moderne turbine-installaties is suppletie nodig met ca. 5% van de totale omlopende hoeveelheid.
<br>Hiervoor worden verdampers gebruikt: de stoom gaat door pijpen en het te reinigen water gaat om de pijpen. Het verdapmte water wordt omgekeerd door pijpen geleid met daaromheen de koelwaterpijpen. Op deze wijze is er gedestilleerd water beschikbaar. De verdampers kunnen worden uitgevoerd als één-,twee- en meervoudig getrapte systemen.
De slib wordt uit de verdampers afgevoerd (gespuid)
 
'''Condensatiewater als voedingswater'''
Wanneer het condensatiewater vrij van olie is (bij stoomturbines), zal dit het beste voedingswater vormen. Bij stoommachines zal er door smering altijd olie in het condensaat zitten en dus zal de olie eerst van het water moeten worden afgescheiden. Het water simpelweg van de stoom gaan scheiden door het toepassen van een reservoir met houtwol of met een spons is niet altijd voldoende, om de ketelwanden te beschermen voor intering.
In het Woudagemaal past men nog aanvullende methoden toe: men laat in de compartimenten van de olieafscheider de olie eerst opdrijven, en verwijderd de olie vervolgens door oprdijving. Door het vervolgens toevoegen van aluminium-sulfaat aan het afgeroomde condensaat, vlokken de laatste olieresten uit en deze vormrn in het doeken-persfilter een geschikt substraat, dat als eindfilter dient voor het condensatiewater. Daarna is het water geschikt om als voedingswater te dienen en zodoende te worden hergebruikt. 
 
Bronnen:
'''samenvattingen''' uit:
<br>'''Stoom''', uitgave: Krachtwerktuigen Amersfoort/Groningen, 1929 en 1942
<br>'''Het Stoombedrijf''', deel I, Nanno A. Imelman, Ae. E. Kluwer, Deventer 1932
<br>zie ook: ['''http://www.gerwers.net/waterbehandeling.htm''']

Versie van 29 nov 2011 11:46

De machinist heeft als taak erop toe te zien dat de stoomwerktuigen op de juiste manier en met grote regelmaat hun arbeid kunnen leveren. Hij heeft daarbij de supervisie over de gehele stoominstallatie: de stoomketel, de stoommachines en alle bijbehorende hulpapparatuur.
Hij moet daarbij voortdurend waken voor gevaren die zich tijdens het werken met de machines en toestellen kunnen voordoen.
De vakopleiding tot machinist vraagt kennis van de opbouw en werking van stoommachines en alles wat daarbij tot een complete stoominstallatie behoort.
Zowel de machinist als de eigenaar van de stoomtoestellen moeten op de hoogte zijn van de eisen die aan het uitoefenen van een dergelijke functie worden gesteld.

De werkzaamheden van de machinist worden bepaald door de omvang en het doel van de stoominstallatie.
Vaak wordt er onderscheid gemaakt: een machinist kan zijn werk uitoefenen bij de spoorwegen (spoorwegmachinist), op de grote vaart (scheepsmachinist) of bij stoombedrijven op het vaste land (landmachinist). Tot de stoombedrijven op het vaste land behoren ook de stoomgemalen.
In principe behoren tot de werkzaamheden van de machinist het stoken van de ketel, het verzorgen van de stoommachine, maar ook het overbrengen van het bewegende arbeidsvermogen op het productiesysteem.
Bij de uitgebreide stoominstallaties van fabrieken of de grote gemalen kan één enkel persoon dit werk niet allemaal tegelijk uitvoeren. Daarom krijgt hij extra personeel toegewezen, die eenvoudiger werkzaamheden kunnen overnemen: het schoonhouden, poetsen, smeren, aanvoer van brandstof (steenkolen). Ook de afvoer van as en sintels kan door helpers worden verricht.
Het stoken van de ketels gebeurt dan door de stokers, een werkzaamheid die veel vakbekwaamheid vraagt. De stoker moet een goed oog voor de veiligheid hebben en hij moet vooral zuinig kunnen stoken.